Biochemical characterization of New Delhi metallo-β-lactamase variants reveals differences in protein stability

نویسندگان

  • Anne Makena
  • Jürgen Brem
  • Inga Pfeffer
  • Rebecca E. J. Geffen
  • Sarah E. Wilkins
  • Hanna Tarhonskaya
  • Emily Flashman
  • Lynette M. Phee
  • David W. Wareham
  • Christopher J. Schofield
چکیده

OBJECTIVES Metallo-β-lactamase (MBL)-based resistance is a threat to the use of most β-lactam antibiotics. Multiple variants of the New Delhi MBL (NDM) have recently been reported. Previous reports indicate that the substitutions affect NDM activity despite being located outside the active site. This study compares the biochemical properties of seven clinically reported NDM variants. METHODS NDM variants were generated by site-directed mutagenesis; recombinant proteins were purified to near homogeneity. Thermal stability and secondary structures of the variants were investigated using differential scanning fluorimetry and circular dichroism; kinetic parameters and MIC values were investigated for representative carbapenem, cephalosporin and penicillin substrates. RESULTS The substitutions did not affect the overall folds of the NDM variants, within limits of detection; however, differences in thermal stabilities were observed. NDM-8 was the most stable variant with a melting temperature of 72°C compared with 60°C for NDM-1. In contrast to some previous studies, kcat/KM values were similar for carbapenem and penicillin substrates for NDM variants, but differences in kinetics were observed for cephalosporin substrates. Apparent substrate inhibition was observed with nitrocefin for variants containing the M154L substitution. In all cases, cefoxitin and ceftazidime were poorly hydrolysed with kcat/KM values <1 s(-1) μM(-1). CONCLUSIONS These results do not define major differences in the catalytic efficiencies of the studied NDM variants and carbapenem or penicillin substrates. Differences in the kinetics of cephalosporin hydrolysis were observed. The results do reveal that the clinically observed substitutions can make substantial differences in thermodynamic stability, suggesting that this may be a factor in MBL evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Verona Integron-Borne Metallo-β-Lactamase (VIM) Variants Reveals Differences in Stability and Inhibition Profiles.

Metallo-β-lactamases (MBLs) are of increasing clinical significance; the development of clinically useful MBL inhibitors is challenged by the rapid evolution of variant MBLs. The Verona integron-borne metallo-β-lactamase (VIM) enzymes are among the most widely distributed MBLs, with >40 VIM variants having been reported. We report on the crystallographic analysis of VIM-5 and comparison of bioc...

متن کامل

Membrane-anchoring stabilizes and favors secretion of New Delhi Metallo-β-lactamase

Carbapenems, 'last-resort' β-lactam antibiotics, are inactivated by zinc-dependent metallo-β-lactamases (MBLs). The host innate immune response withholds nutrient metal ions from microbial pathogens by releasing metal-chelating proteins such as calprotectin. We show that metal sequestration is detrimental for the accumulation of MBLs in the bacterial periplasm, because those enzymes are readily...

متن کامل

New Delhi Metallo-β-Lactamase–producing Enterobacteriaceae, United States

We characterized 9 New Delhi metallo-β-lactamase-producing Enterobacteriaceae (5 Klebsiella pneumoniae, 2 Escherichia coli, 1 Enterobacter cloacae, 1 Salmonella enterica serovar Senftenberg) isolates identified in the United States and cultured from 8 patients in 5 states during April 2009-March 2011. Isolates were resistant to β-lactams, fluoroquinolones, and aminoglycosides, demonstrated MICs...

متن کامل

Biochemical Characteristics of New Delhi Metallo-β-Lactamase-1 Show Unexpected Difference to Other MBLs

New Delhi metallo-β-lactamase (NDM-1) is a new metallo-β-lactamase (MBL) that has recently emerged as a global threat because it confers bacteria with resistance to almost all clinically used β-lactam antibiotics. To determine the molecular basis of this threat, NDM-1 was purified from Escherichia coli TransB (DE3) carrying cloned blaNDM-1 gene by an anion-exchange chromatography step followed ...

متن کامل

Extensively Drug-Resistant New Delhi Metallo-β-Lactamase–Encoding Bacteria in the Environment, Dhaka, Bangladesh, 2012

Carriage of the New Delhi metallo-β-lactamase variant 1 (NDM-1) enables drug resistance to move between communities and hospitals. In Bangladesh, we found the blaNDM-1 gene in 62% of environmental waters and in fermentative and nonfermentative gram-negative bacteria. Escherichia coli sequence type (ST) 101 was most commonly found, reflecting a common global relationship between ST101 and NDM-1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2015